
The Universal Prover

March 30, 2025

1 The problem
The perfectly reliable automation of natural language deductive reasoning is an
important task. It would be a significant contribution to artificial general intelligence
(AGI), and the AI system that achieved that automation could be incorporated into
any other AI system as a natural language deductive reasoning module. It could do
for deductive reasoning what ordinary calculators did for arithmetic.

At present, we have two kinds of AI systems for the automation of deductive
reasoning:

(i) Our most advanced general-purpose AI systems are Generative AI (GenAI)
systems like ChatGPT. They perform natural language reasoning tasks, but
they are notoriously unreliable at them, and the underlying technology, which
is a sophisticated form of predictive text, makes it impossible for them to ever
achieve 100% reliability.

(ii) The automated theorem provers (known both in the industry and the research
literature as provers) of Symbolic AI/Good Old-Fashioned AI (GOFAI) are
100% reliable, but they do not understand or produce output in natural lan-
guages, and they are extremely difficult to use. Even most professional math-
ematicians do not use them for this reason.1

Thus, any person or organization that wishes to benefit from the automation of
deductive reasoning tasks but requires that automation to be 100% reliable faces an

1When mathematicians use theorem provers, they must first learn to code and then figure out
how to express their problem in computer-friendly language. As mathematician Michael Harris of
Columbia University put it: “By the time I’ve reframed my question into a form that could fit into
this technology, I would have solved the problem myself” (quoted in Quanta Magazine, August 27,
2020).

1

impossible dilemma: a choice between unreliability (which is ruled out) and virtual
unusability. This, in practice, makes it impossible for the vast majority of such
potential end users to avail themselves of the extremely powerful computational
resources that are already in principle available for their purposes.

2 An analysis of the problem
The basic reason why the perfectly reliable automation of natural language deductive
reasoning cannot be achieved by means of the technology underlying our most
advanced general-purpose AI systems (at present, in 2025) is very simple. It is
easiest to understand by considering, by way of analogy, the problem of automating
chess playing. A GenAI chess engine would, at each point, make the move that, in
its judgment, is most likely to lead to a win (or, barring that, a draw) given both
the moves made in the game so far and a vast data set of games of chess, perhaps
including ones in which it attempts to play against itself, but with no knowledge of
the rules of chess. Given enough data and suitable weights for its learning algorithm,
the chess engine might become very good at simulating playing chess, and it might
even typically perform very well against the casual human chess player, but it could
be relied upon to occasionally make not just a bad move but an illegal move—say,
attempting to castle a second time when it observes the pieces in the characteristic
pre-castling configuration—because, by its very design, it is incapable of assigning
a probability of zero to a move that is actually illegal (or to any move). Needless
to say, no one ever seriously proposed building a chess engine that works like this.
Yet, difficult as it may be to believe, this is exactly how our most advanced natural
language reasoning engines work: they do not know any rules of deductive logic;
rather, they simulate deductive reasoning in the way the chess engine imagined
above simulates chess-playing, with predictable results.

This is why GenAI, as an approach to the automation of natural language deduc-
tive reasoning, is a dead end (and a very expensive one). GenAI reasoning engines,
like our imaginary GenAI chess engines, can be expected to get better if we continue
to expend more resources training them, but (i) with diminishing returns, and—more
importantly—(ii) no matter the amount of resources we throw at training them, we
can expect them to occasionally lapse into total incoherence (“hallucinations”) in
ways in which an intelligent human would never do. In contrast, a well-designed
GOFAI prover not only never makes mistakes in its reasoning but we can prove that
it will never make a mistake in its reasoning.

GOFAI, however, is also a dead end as an approach to the automation of natural
language deductive reasoning. This is not because the rules of deductive logic are

2

too complex for humans to write down—on the contrary, they are very simple.2 Nor
is it because natural language is too complex for humans to be able to write down
algorithms for the application of those rules to natural language—doing so is merely
tedious; the main obstacle there is boredom, and that obstacle is easy to overcome
with the tried and tested method of the cash incentive.3 The problem, rather, is that a
pure GOFAI system for automating natural language deductive reasoning will not do
anything. It will consist of several grammars (equivalently: parsers), translations,
and a proof-checker (a parser for proofs). Humans do not know how to write down
good algorithms for generating the proofs to be checked by the proof-checker or for
formalization, which is essentially a matter of finding the most likely parse trees for
ambiguous sentences/texts.

3 The solution: UP

3.1 Motivation and overview
In a way, the solution is obvious. It’s the same as the solution to the problem of
automating chess-playing: our best chess engines have a GOFAI component that
ensures that an illegal move is never made and a GenAI component that searches the
space of game trees consisting of only legal moves for the best move. (This is how
DeepMind’s AlphaZero works.) Because the desiderata for a deductive reasoning
engine are a little different from those for a chess engine, we want something
slightly different, however—what we want is a modular GOFAI/GenAI hybrid with
the following properties:

(i) The system has GOFAI modules that perform the tasks that can be performed
by GOFAI and GenAI modules for the remaining tasks. (The system will have
this much in common with a good chess engine.)

(ii) The tasks are divided between GOFAI and GenAI in a way that does not
compromise the transparency, reliability, and control that come with good
GOFAI automation: Not only must the system be designed so that it is inca-
pable of making an illegal move (reliability), but also so that we can check its
work (transparency) and intervene in its process as needed to ensure that it is
working on the problem we intended to direct it to work on (control).

2All of the rules of deductive logic can be reduced to ten or so rules for manipulating formulae
constructed out of variables and the inclusion symbol “⊆𝜎” by function application and function
abstraction: see §4.2.2.

3Which is not even needed when you have academics employed by universities working on it;
some of them actually enjoy this kind of work.

3

The Universal Prover (UP) is the GOFAI component of this modular AI system.
It consists of several GOFAI modules assembled into a structure with “gaps” for
GenAI modules that, when filled, will produce an AI system with properties §3(i)
and §3(ii). The gaps are so designed that they can be filled with off-the-shelf GenAI
components, requiring minimal customization/fine-tuning, so that someone who
wants to use UP to build their own natural language deductive reasoning module
can do so without giving the matter much thought. (There will also be a POC version
with all the gaps filled by us.) On the other hand, for someone with very ambitious
plans for a natural language deductive reasoning module, the sky is the limit: they
are free to use whatever resources are available to them for training purpose-made
GenAI components to fill the gaps.

The power of the resulting AI system will be a function of the GenAI modules
that fill the gaps: e.g., one can assign the task of searching for proofs to a so-so
open source prover, to the neural prover underlying DeepMind’s AlphaProof or to
something even more powerful, or to anything in between. What UP contributes is
not power but a design that extends a guarantee of perfect reliability as well as—
optionally—-transparency and manipulability to the entire AI system constructed
by filling its gaps.

Remark 1. Transparency and manipulability are optional, in the sense that there is
nothing to stop someone wishing to do so from enclosing the resulting system in a
black box that “hides the work” and only shows the results.

Such applications of UP may be desirable for some purposes. For example,
it may be impractical to include in the customer user interface of an automatic
cashier/checkout that incorporates UP an option for inspecting its chains of reason-
ing. In-N-Out, for example, can be expected not to want its customers to spend any
time inspecting the chain of reasoning that led its checkout to recommend adding a
strawberry shake to an order of a Double-Double and French fries, or inspecting
the parse tree it assigns to the customer’s request for “a Double-Double and French
fries”.

On the other hand, In-N-Out will presumably find value in a different user
interface (for employees, not customers) that does show the work in case of (e.g.) a
disputed transaction.

3.2 The task and its subtasks
The basic kind of task that a UP-based natural language deductive reasoning module
is meant to perform is that of determining whether a given sentence in given natural
language (“the conclusion”) deductively follows from a given set of sentences of
that same language (“the premises”). (For purposes of illustration, in what follows

4

we will assume that the natural language is English.) This includes the problem
of determining whether a given set of sentences is deductively consistent, since a
deductively consistent set of sentences is one from which no contradiction (a pair
of a sentence and its negation) follows deductively.

We break up the task into seven subtasks: four that are best handled by GOFAI
and three that are best handled by GenAI:

(i) Disambiguation: Disambiguating ordinary English input into sentences of
a disambiguated version of English, which we will call English as a Formal
Language (EFL). Since this is a matter of guessing what disambiguation the
user or author of the sentences (if distinct from the user) would accept, it is a
task for GenAI (such as an LLM).

(ii) EFL/HOL translation: Translating the problem from EFL into an enriched
version of the language of higher-order logic (HOL)—a GOFAI task.

(iii) Proof search: To find a solution, specifically a proof in UP’s formal system—a
task for GenAI (such as the neural prover that is at the core of DeepMind’s
AlphaProof).

(iv) Proof-checking: To check the solution(s) offered by the GenAI prover, i.e.,
proof-checking—a GOFAI task.

(v) HOL/EFL translation: To translate the solution(s) from HOL into from
EFL—a GOFAI task.

(vi) Syntactic sugaring: To rewrite the EFL solution into a form that is easy for
a human reader to understand, a process known in programming as syntactic
sugaring. (This is a form of EFL-to-EFL paraphrase, since EFL already
includes the sugary variants of all of its sentences.) By definition, syntactic
sugaring includes the use of abbreviating conventions (if used to aid readabil-
ity), such as conventions for eliminating parentheses, subscripts, superscripts,
etc. This includes the abbreviation of proofs by the omission of obvious steps.
However, sugaring is not always abbreviation: it can also increase the char-
acter count (e.g., by replacing “∀𝑡” with “every property of propositions” or
by adding signposts like “therefore” and “which contradicts our hypothesis”
to proofs) as well as replace strings by two-dimensional representations: e.g.,
rewriting exponents:

((ˆ𝜔) ((ˆ𝜔) ((ˆ𝜔)𝜔)))

5

as iterated superscripts:

𝜔𝜔𝜔𝜔

,

which are certainly easier to read, or using different sizes of parentheses to
make it easier to count parentheses and to tell which right parentheses go with
which left ones, as in:4((

𝑝 → (𝑞 = ⊤)
)
∧
(
¬𝑝 → (𝑞 = ⊥)

))
Syntactic sugaring is a GenAI task, presumably for an output LLM.

(vii) Sugar-checking: Unlike the work of the input LLM, the work of the output
LLM (or similar, at the previous step), can be and will be mechanically
verified. This can be done because there are explicit conventions5 according
to which syntactic sugaring proceeds. For example, one such convention is
that omitted parentheses around arrows group to the right, so when you see
the string:

𝑡 → 𝑡 → 𝑡 → 𝑡

you know that, if the convention was followed, it is a rewriting of this string:

(𝑡 → (𝑡 → (𝑡 → 𝑡))),

and, in cases where no unique string can be recovered from the sugaring, it
will still be possible to check mechanically whether the output LLM has given
us a permissible sugaring of the original. This must be done to ensure that the
output LLM does not introduce any mistakes (such as changing the meaning of
the original when it adds sugar, or producing a sugary-looking string that has
no meaning at all). This process is like proof-checking, but what it verifies
is the accuracy of the syntactic sugaring and other human-reader-friendly
alterations introduced at the previous step—hence “sugar-checking”—thus
ensuring that the output LLM does not alter the meaning of the solution. This
is a job for GOFAI.

4These last two examples are not, strictly speaking, cases of syntactic sugaring, since syntax
pertains to strings, but they are called “syntactic sugaring”.

5In good logic textbooks, anyway, and there will be in UP as well

6

3.3 The rationale for UP’s design
UP is a GOFAI module consisting of GOFAI submodules that perform tasks §3.3(ii),
§3.3(iv), §3.3(v), and §(iv)(vii). It has gaps to be filled by GenAI modules that
perform tasks §3.3(i), §3.3(iii), and §3.3(vi). Except for marketing purposes, and
for building an AI system that we ourselves (those working on the project) will use, it
is not important to us what GenAI modules are plugged in; the guarantee of perfect
reliability, again, comes from the design of UP, which provides the rules according
to which natural language deductive reasoning will proceed once the gaps are filled.

Let us next consider, in more detail, why UP has this design.

3.3.1 The nature of UP’s guarantee of correctness

Let’s begin with the nature of the guarantee of correctness that UP’s design confers
on any natural language deductive reasoning module based in it. It is the strongest
possible kind of guarantee, because it is actually a mathematical theorem that:

(i) no such module (computer program) will ever give an incorrect answer to
a question of the form “Is 𝜑 a deductive consequence of Γ?”, where 𝜑 is a
disambiguated sentence and Γ a set of disambiguated sentences; and

(ii) no such module will ever present an invalid chain of deductive reasoning when
asked to justify its answer.

Thus, we should be as confident in the correctness of the answers and justifications
given by any UP-based deductive reasoning module as we are in the truth of any
mathematical theorem (once it has been proved, and this one has been): 100%.

That’s the beauty of GOFAI: When it comes to cognitive tasks that can be so
precisely defined that there is an algorithm for determining what counts as a mistake
in peforming the task, it is possible to come up with a modular design for a hybrid
GOFAI/GenAI system such that it is a mathematical theorem that no system with
that design—no matter what its GenAI components are like, and no matter how
unreliable or reliable they are at performing their own subtasks—will ever make a
mistake in performing the task.

Of course, not every cognitive task is like this.6 We are very lucky in that
6For example, computer vision, no matter how advanced and reliable, will never enjoy a mathe-

matical guarantee of correctness, because there is no algorithm for determining whether an artificial
visual system is making a mistake. In fact, it seems plausible that a properly functioning artificial
(or natural) visual system ought to get things wrong, in some sense, in some cases. (See Williamson
1990 for some reasons why.) Of course, if we individuate cognitive tasks finely enough, it will be
easy to find ones for which some notion of correctness can be given a precise enough definition for
mathematical guarantees of correctness for an AI system peforming it to be imaginable. Playing
chess is one such.

7

deductive reasoning, which is a significant component of AGI, is—and has been
known to be since 1879.

The theorem described above cannot be stated here in full detail. That would
require defining, among other notions, “deductive reasoning module” and “based on
UP”, as well as the design of UP itself—not down to the last detail, but in enough
detail for it not to be appropriate for this document. However, without delving any
deeper into these details than we already have, it will be possible to convey the basic
idea of the theorem, which is extremely simple: no matter how you fill the gaps in
UP, the resulting system will not produce any chains of deductive reasoning that are
not in conformity with the rules of UP’s extended formal system, by which we mean
the combination of the formal system in which UP’s HOL proofs are constructed
with UP’s rules of EFL ↔ HOL translation and UP’s rules of syntactic sugaring7—
that’s §3.3.1(ii), and it’s easy to see why it’s true. §3.3.1(i) immediately follows,
since the system will say that 𝜑 a deductive consequence of Γ if, and only if, it
has found a derivation of 𝜑 from Γ in the extended deductive system. In software
engineering terms, our theorem is a case of software verification, or of proving that
a computer program, or a class of computer programs, does what it is supposed to
do.

At this point, a philosophically-minded reader feel tempted to ask us how we
know that the rules of UP’s extended formal system are correct. They should resist
that temptation, because we never claimed to know that those rules were correct,
nor do we know what it would mean to attribute correctness to the rules of a formal
system.8 The question of whether it is a good idea to adopt that formal system over
its competitors—such as some extension of Lean, for example—is not to be confused
with the question of the (provable) correctness of deductive reasoning modules based

7A translation is a step in a chain of deductive reasoning. Think of the rules of translation as
extending the rules of UP’s deductive system by a rule like:

If a sentence 𝜑 can be transformed into a sentence 𝜓 by the rules of translation, then
one may infer 𝜓 from 𝜑 and vice versa.

Syntactic sugaring is also a step in a chain of deductive reasoning. Think of the rules of syntactic
sugaring as extending the other rules by a rule like:

If a sentence 𝜑 can be transformed into a sentence 𝜓 by the rules of syntactic sugaring,
then one may infer 𝜓 from 𝜑 and vice versa.

8An answer one sometimes encounters in philosophical writing goes like this: the rules are
correct only if they never allow one to derive a false sentence from a set of true sentences. It is, in
fact, true—and even provable!—that the rules in question never allow one to derive a false sentence
from a set of true sentences, but we do not think this banal observation in any way justifies the
adoption of those rules, because, in proving it, we must use those same rules (and even stronger
rules/axioms, if we formalize the theory of truth in the standard way, following Tarski 1933).

8

on UP, i.e., the question of whether their deductive reasoning (provably) conforms
to the rules in question. The latter question is the topic of this subsection.

3.3.2 A division of labor, enabling a new paradigm for AI

The gaps are where they are in UP because placing them just there makes possible a
certain desirable division of labor between GOFAI and non-GOFAI components that
makes possible not only the guarantee of correctness considered above but also one
in which the only possible sources of error are, broadly speaking, human error—and
this, in turn enables a new paradigm in AI.

Clearly, the only possible source of error in a UP-based system for automating
deductive reasoning is in the operation of the input LLM, and there the ultimate
responsibility lies with the human user. If the human user approves an unintended
disambiguation, then that is squarely on the human user; and if the human user
decides not to intervene and to allow the input LLM to take its best guess as to what
is meant, any unintended disambiguations are again the responsibility of the human
user (one cannot avoid responsibility for oversight by deciding not to oversee).

This separation of tasks into those that can be achieved with perfect reliability
and transparency by GOFAI and those that cannot be achieved with perfect reliability
and transparency by anything, and a division of labor in which GOFAI performs
the former and ultimate responsibility for the latter lies with human users is, in our
view, essential for any acceptable AI system. It is absent in the current AI paradigm,
but see §5.1.

3.3.3 Ease of assembly

There is yet one more reason why we have placed UP’s gaps as we have, which has
already been mentioned: another of our desiderata for UP is that it should be able
to serve as a prefabricated GOFAI structure that can quickly, cheaply, and without
giving much thought to the matter be assembled into a complete deductive reasoning
module by the addition of widely available, inexpensive prefabricated GenAI slabs:
an input LLM, an output LLM, and a neural prover.

4 A comparison with Lean

4.1 A quick comparison
A comparison with Lean, which is a similar system that solves a similar but not
quite as general a problem, will be useful. Lean is a system for automating deduc-
tive reasoning in an artificial language (the Lean Language), and specifically for

9

automating reasoning in pure (as opposed to applied) mathematics. Lean has three
gaps that must be filled by GenAI modules:

First, the disambiguation and translation of ambiguous natural language into
the Lean Language is a single gap, which it would be natural to fill with an input
LLM.

Second, the search for proofs in the Lean Language, in Lean’s formal system, is
a gap naturally filled with a neural prover.

Third, translation from the Lean Language into ambiguous natural language
along with syntactic sugaring is a single gap, naturally filled by an output LLM.

DeepMind’s AlphaProof fills all three gaps as indicated above. While Al-
phaProof is a formidable AI mathematician, as witnessed by its performance on
2024 IMO problems,9 in virtue of its being based on Lean, AlphaProof lacks all of
the characteristic virtues of UP—as will any automated deductive reasoning module
based on Lean.

4.2 A more detailed comparison
Let’s now compare UP with Lean in more detail, and consider the components of
UP that contribute to its virtues along with their counterparts (or the absence of
counterparts) in Lean.

4.2.1 Disambiguated natural language

In EFL, the disambiguated natural language used by UP, each sentence is its own
parse tree, making parsing a trivial task. Each “word” of the language (each constant
and each variable) is assigned both a type and a grammatical category.

Types are familiar from both logic10 and programming, and in UP they are used
both for the usual purpose—i.e., for checking that terms are well-typed—as well as
for ensuring that the translations between EFL and HOL used by UP are correct.
(Correct translations are compositional—i.e., each word and each formation rule
has its own translation—and preserve the types of all words.) As in logic and
programming, the type of a word is indicative of (but does not fully determine)
its meaning. For example, in “if 𝑥 = 𝑦, 𝑦 = 𝑥”, “if” has the type 𝑡 → (𝑡 → 𝑡),
and this tells us that its meaning is a function from propositions to functions from
propositions to propositions, but this does not set it apart from “and” or “or”, which
have the same type but different meanings.

9The version of AlphaProof that yielded the impressive performance actually used humans to fill
the first gap.

10Where they originated, in the work of Bertrand Russell in the very early 20th century.

10

Grammatical categories are used for ensuring that EFL sentences are grammatical—
meaning, roughly, that they are acceptable to a normal adult native speaker of En-
glish. The need for grammatical categories is easy to illustrate using the same
example: “if 𝑥 = 𝑦, 𝑦 = 𝑥” is grammatical but “implies 𝑥 = 𝑦, 𝑦 = 𝑥” is not, even
though “if” and “implies” have the same type and the same meaning. For this rea-
son, we need to put some further tags on “if” and “implies” when we formulate the
grammar of EFL, and we call these further tags “grammatical categories”. Exactly
which tags are used in the official grammar is of little importance, because the tags
will be replaced by various other tags in different settings designed for different
classes of user. For example, for some users, in some situations, giving “implies”
the tag “Verb” and “if” the tag “Boolean” will be optimal.

The procedure we follow in specifying the grammar of EFL will look familiar to
many linguists (it is essentially the same one, give or take, that was introduced by the
logician Richard Montague, whose work has been very influential in linguistics), but
the details are not important. What is important is how EFL sentences look (when
properly typeset), and that they should wear their meanings on their sleeves, even
for users who are not familiar with Montague’s work or with the relevant areas of
linguistics. Since UP should not force the user interface of any AI system constructed
around it to display EFL sentences in any particular way, but it should make it easy
for any programmer constructing such an AI system to solve the typesetting problem,
UP uses LATEX code for writing EFL sentences. Thus, by using a LATEX compiler,
one can make EFL sentences look nice without giving any thought to typesetting or
graphic design, but one can also choose to display them in any other way one likes.

What does the LATEX look like when compiled? There is no unique way it will
look. Each EFL sentence will have a default LATEX encoding, but UP will also have
many alternative encodings to choose from. For example, there will be one that uses
numerical indices to represent binding, as in:

[every philosopher]1 thinks that he1 is clever,

as well as one that represents binding by curved arrows above the sentence, among
other alternatives.

Even though such matters of typesetting/graphic design are irrelevant to the job
of UP, they are very important to us, because, if we do not have a POC version
of an AI system based on UP in which all of this is in place, we will not be able
to convince end users to adopt UP. They can only adopt UP by adopting some AI
system based on it, and we must present them with one that has a highly intuitive
and elegant GUI through which they can appreciate the real distinctive virtues of
UP.

Note that, for an EFL sentence to “wear its meaning on its sleeve”, it must be
displayed together with its translation into HOL. For example, “implies” and “con-

11

tradicts” have the same type and grammatical category, but they differ in meaning,
and what accounts for that is their being translated into HOL terms that differ in
meaning. How to represent this is another matter of typesetting/graphic design, and
the details don’t matter here, but getting the details right will be important for our
POC.

There is also much more to the structure (as opposed to typesetting/graphic
design) of EFL than can even be sketched here, so we’ll forego the sketches, but
we nevertheless mention two examples of what else there is. First, since the unit
of translation is not a sentence in the usual (“grammatical”) sense, the grammar of
EFL is not a grammar of sentences in the usual sense but of the genuine units of
translation, which we may call texts. Books and journal articles are examples of
texts. So are certain sorts of dialogues: e.g., between a chatbot and its user. (Luckily
for us, LATEXis well designed for representing the structure of a text.) Second, the
grammar of proofs is an important part of the grammar of EFL—one that makes
explicit much of what is implicit in logic textbooks. A GenAI system may be given
the job of finding candidate abbreviations of proofs, but it cannot be given final say:
our grammar will determine what is and is not an acceptable abbreviation of a proof.

Disambiguated natural language is nowhere to be found in Lean. Consequently,
AlphaProof goes directly from ambiguous natural language to Lean to back, by an
untransparent and unreliable process that the user cannot control or correct, except
by doing the translations by hand (as was actually done to achieve AlphaProof’s
impressive IMO performance).

4.2.2 The language HOL

The language we are calling “HOL” is one that has been (give or take some frills and
notational conventions) in use in mathematics/logic since Russell and Whitehead’s
Principia Mathematica (1910) as well as in automated theorem proving (Isabelle
uses a close variant). Its primitive symbols and constructions are ubiquitous in
professional mathematics and even, as we already mentioned, in high school math-
ematics texts. Its only primitive symbols are:

• The standard subset symbols “⊆” (of different types), which mean just what
they appear to mean (“⊆” may be pronounced “every”, as in “every man is
mortal”).

• An infinite stock of variables (of each type), which also look, if given the
default typesetting, just like the variables of mathematics textbooks.

Its only constructions (formation rules) are:

• Function application, which looks like this: “ 𝑓 𝑥”.

12

• Function abstraction, which we write, following tradition, “𝜆𝑥.𝑀”; in a typical
mathematics textbook this is written as “𝑥 ↦→ 𝑀” or “the function that maps 𝑥
to 𝑀”, or something similar (these variant constructions are included in EFL).

In contrast, the Lean Language includes several basic constructions (notably,
ones with so-called dependent types) that are not to be found anywhere in normal
mathematics and that are difficult to master without extensive study. (For what it’s
worth, none of the UP team members know how to use dependent types.)

4.2.3 Translations between EFL and HOL

It is well known that all mathematical/logical notions can be defined using only the
resources specified above, so translating purely mathematical/logical EFL sentences
into HOL is unproblematic.

Non-logical/mathematical notions like man and mortal, however, are not defin-
able using only these resources, so there is a sense in which we cannot translate a
sentence like “Every man is mortal” into HOL. But there is also a sense in which we
can, and that is the sense we have in mind when we say that we explore the deductive
consequences of “Every man is mortal” by exploring the deductive consequences
of its translation into HOL: non-logical words like “man” and “mortal” translate, in
this sense, into variables of the same type. Because deductive logic does not care
about the difference between one non-logical word and another (of the same type),
when we ask about the deductive consequences of “Every man is mortal”, we might
as well be asking about the deductive consequences of “Every 𝐹 is 𝐺”. This is the
normal procedure in mathematics (consider, e.g., the proof of the independence of
Euclid’s parallel postulate11), and it is also our procedure.

There is a unique compositional translation from EFL into HOL, but not from
HOL into EFL. When going in the latter direction, we must keep track of context.
This is not as difficult as it sounds, because we do not actually first translate to HOL
and then put our prover(s) to work. Rather, we give the prover the original EFL
and the translation (in the form of rewrite rules, not all of which will be used in a

11Which, like any independence proof, can be reconstructed as one that proceeds by first “trans-
lating” all primitive terms of the science under consideration (in this case, geometry) into variables
and then showing, by constructing a model that supplies suitable values for the variables, that the
“translation” of the postulate whose independence is to be proved cannot be derived from the “trans-
lations” of the other postulates (nor can the “translation” of its negation). In the case of geometry,
we can let the primitive terms be (following Hilbert) “point”, “line”, “plane” “between”, “lies on”,
and “congruent”. When we are interested in what deductively follows from some given postulates
(axioms) one might formulate using those terms, we replace each of them with a distinct variable
of the same type as the original term and then explore the deductive consequences of the resulting
“translations”.

13

typical proof—the usual procedure in automated theorem proving). For this reason,
the proof we get from the prover that we add to UP will already tend to look a lot
like EFL reasoning, requiring minimal further translation.

Lean does not provide any translations between the Lean Language and any
disambiguated natural language, with the result that the only thing AlphaProof
adds to Lean that is of value to users demanding transparency and a guarantee of
correctness is the prover that searches for proofs in Lean.

4.2.4 The formal system

The formal systems of UP and Lean—i.e., the rules of proof (or rules of inference)
according to which they go about their deductive reasoning—are both provably
consistent according to the usual mathematical standard of consistency.12 However,
Lean’s formal system is provably stronger than UP’s,13 so, in a sense, UP is “safer”
than Lean: someone who does not accept the usual mathematical standard of
consistency would have a reason to think: “Even though both are consistent by the
usual standard of proof, UP is less likely to be inconsistent than Lean.” However,
when it comes to the question that matters in the present context—namely, the
question of which formal system we want our AI to conduct its deductive reasoning
in—we take such philosophical considerations to be, if not completely irrelevant,
nevertheless of so little significance in comparison with questions of a more practical
nature that we can safely ignore them.

In case what we have just said sounds glib, let’s be clear that it isn’t: If we are
given a choice between two formal systems, 𝑆1 and 𝑆2, and there is no serious doubt
about consistency of either, but it is clear that one is less “practical” than the other
in a sense that would makes its adoption lead to more mistakes in its use (or to other
tangible badness, such as slowing down the search for proofs), then, other things
being equal, we should choose the more practical system even if it is stronger (and
therefore, in a sense, more likely to be inconsistent) than the less practical one.

12I.e., consistent relative to ZFC. There is no such thing as a proof of consistency simpliciter
(except in an inconsistent formal system), as we learned from Gödel in 1930. Mathematicians tend to
call consistency relative to ZFC simply “consistency” because they assume that ZFC is consistent,
not because they can prove it to be consistent but because no one has ever found a derivation of a
contradiction in it, even though it is the most extensively studied formal system in history.

13Again, relative to ZFC—a qualification that will be elided in what follows. A quick sketch
of a proof: Because Lean’s formal system has a type of all finite types, that type can be used (as
in Tarski’s original 1933 construction) as the “unifying type” in the construction of a definition of
truth for UP’s formal system (all of whose types are finite); this, in turn, yields (again, following
Tarski 1933) an easy proof of the consistency of UP’s formal system in Lean’s, which implies, by
Gödel’s second incompleteness theorem, that Lean’s formal system is stronger than UP’s (if UP’s is
consistent).

14

In any case, when it comes to the choice between the formal systems of UP and
Lean, the former is favored by both the practical and the philosophical considerations.
There are three main practical considerations:

Intensionality vs. extensionality: Lean’s formal system is extensional, meaning
that it cannot recognize any distinctions between propositions that have the same
truth value. This makes that system unsuitable for the automation of deductive
reasoning outside of pure mathematics, where such distinctions are constantly drawn.
For example, we want to deny that the probability (𝑃) that

𝑟 := it will rain in Melbourne tomorrow

is either 0 or 1, but if we are reasoning in an extensional system, we can do so only at
the cost of contradicting ourselves, because in an extensional system we can prove
that

either 𝑟 = ⊤ or 𝑟 = ⊥

and, no matter how we formalize our theory of probability, we can prove that

𝑃(⊤) = 1 and 𝑃(⊥) = 0

so we can prove that

either 𝑃(𝑟) = 1 or 𝑃(𝑟) = 0.

This does not mean that Lean’s formal system cannot be used for reasoning about
probability or other topics that require one to draw non-extensional distinctions.
There are well-known tricks that can be used for embedding intensional formal
systems into extensional ones. However, no such tricks are included in Lean, and
thus, insofar as a deductive reasoning module based on Lean (such as AlphaProof)
is able to do any deductive reasoning involving probabilities other than 0 and 1, the
key parts of that reasoning are carried out by its input and output LLMs (or other
GenAI modules), so there can be no guarantee of correctness for that reasoning.

In contrast, the formal system in which UP’s proofs are constructed is not ex-
tensional but is intensional (meaning that it cannot draw any distinctions between
logically necessarily coextensional propositions), and this turns out to be just the
right strength for the automation of any deductive reasoning about any topic what-
soever.

Natural language: No natural language deductive reasoning can be carried out in
Lean’s formal system. In contrast, there is no natural language deductive reasoning

15

that cannot be carried out in Lean’s extended formal system.

Standard rules of proof: The core (non-extended) formal system of UP is made up
entirely of standard rules of proof that will be readily understood by mathematically
literate users, making it easy for such users to manually check the proofs if they
wish to do so. In contrast, the rules of Lean’s proof system are notorious for being
incomprehensible to anyone but specialists in Lean.

5 The uses of UP
What’s UP good for? Many things, one of which is the introduction (or re-
introduction) of a new paradigm in AI. We’ll begin with that, and then consider
some examples of UP’s many uses.

5.1 A new paradigm for AI
Once UP’s division of labor in the automation of natural language deductive rea-
soning is available, a new paradigm for AI systems—one that is both vastly cheaper
and more reliable than the current one—will also become available. In this new (or
actually old but forgotten14) paradigm, AI systems know (or believe, assert, . . .)
things by representing some of their knowledge (beliefs, etc.) by means of a sparse
set of disambiguated sentences drawn from trusted sources and by deducing, by
means of a UP-based module, the rest of what they know (believe, etc.) from those
sentences. Such an AI system will be incapable of “hallucination”. There will be
no guarantee that everything it deduces is true, but there will be a guarantee that,
if it deduces anything false, then it will have done so by deducing that falsehood
from one or more false sentences in the sparse set of disambiguated sentences drawn
from the trusted sources, and there are only two ways for a false sentence to get into
that set: either by an incorrect disambiguation of a true sentence or by an error in
the original trusted source. In either case, the problem can be fixed by finding false
sentences in the sparse set and either deleting entirely or replacing them with true
sentences (the replacements may be correct disambiguations of the sentences found
in the original trusted source). The internal workings of such an AI system will
be perfectly transparent: its errors, unlike those of an LLM, will always be due to
some false sentences in the sparse set that, when excised, will prevent those errors
from recurring. Such an AI system will feature LLMs or other GenAI systems
as component modules, but—as in the design of UP itself—in ways that do not
compromise its transparency, reliability, and controllability.

14The paradigm is as old as the method of formalization (Frege 1879).

16

For many uses of UP, the “trusted source” of the sparse set of sentences need
not be a source that we (actually) trust. There are many reasons why we may be
interested in what deductively follows from sentences whose source someone else
trusts (or what we hypothetically trust).

5.2 Examples of uses of UP
It is not easy to think of an example of an AI system that could not be greatly
improved by the addition of a module for automating all deductive reasoning with
perfect reliability, transparency, plus control over the disambiguation/paraphrase of
the user’s input.

Clearly, any AI system that uses natural language for interacting with its user
would be: such a system needs to know what deductively follows from what the
user says, as well as what deductively follows from any responses the system is
considering giving.

In this connection, it should be emphasized that, although deductive consequence
is only directly defined for (disambiguated) declarative sentences, the system would
deliver equally dramatic improvements in performance with commands (imperative
sentences) and questions (interrogative sentences). For example, (i) as a matter of
deductive logic, a text-to-image generator that receives the instruction “Generate an
image of 4 pairs of sunglasses where every pair with a letter printed on one lens has
a number printed on the other lens” must (if it is to comply with the prompt) ensure
that, in the generated image, each pair without a number printed on one lens does
not have a letter printed on the other lens. To take another example, (ii) as a matter
of deductive logic, a document editor’s Help chatbot that is asked “Is it true that, if a
Sans Serif font includes quantifier symbols, then all of its math symbols also come
in boldface?” must (if it is to give a correct answer) give an affirmative answer if,
and only if: if not all of a Sans Serif font’s math symbols come in boldface, then
it does not include quantifier symbols. Although the principle of deductive logic
that underwrites both (i) and (ii) is completely elementary, GenAI reasoners will
inevitably make mistakes in tasks that require applying it.

For the reader who would like to have more specific examples of the usefulness
of UP, we note that all of the most important applications of UP are instances of
the same schema, and thus it will be more profitable for the user to come up with
their own instances of the schema (which pertain to their own interests or to what
they think of as important tasks for AI). We will describe this schema in what
follows, then give a small number of examples of its instances, and let the reader’s
imagination fill in the rest.

Here is the schema: First, we use UP to assist disambiguate some set of sentences
(or some text) and a sentence; then we ask UP whether that sentence is a deductive

17

consequence of that set of sentences, and (normally) we get an answer along with a
proof of the answer.

Here is a short list of examples:
First example: the FBI and the BLT killer. The case of the BLT killer—a

once-prolific serial killer in the US who earned his nickname by leaving half-
eaten bacon, lettuce, and tomato sandwiches at all crime scenes—has been cold for
decades, but he has recently resurfaced and is presumed to be holding a hostage in
his basement. The FBI has less than 24 hours to decide which basement in Wichita,
Kansas to raid, if any, so it has less than 24 hours to discover the identity of the BLT
killer—something that may well be a deductive consequence of the information it
already has, but, if it is, the FBI’s human agents will not be able to perform the
deduction in less than 24 hours (they weren’t able to do it in the last 30 years). When
they give the job to the UP Reasoner (the special FBI version, which has access to
all of the information to which the FBI has access, within a few minutes, either (i)
a name and an address is found or (ii) a proof is found that the BLT killer’s identity
is not a deductive consequence of that information. If the outcome is (ii), but the
answer is implicit in the information—though not deductively implied by it—then
a GenAI module, which excels at generating plausible intermediate hypotheses,
can assist by querying the agents working on the case to quickly find the answer.
Naturally, the agent leading the investigation understands that the UP Reasoner’s
answer is no more accurate than the sparse set of sentences from which it deduced it
and the disambiguations of those sentences, and will review the process that yielded
the answer before deciding to act on it. (Note that the UP Reasoner here works
somewhat like the “AI agents” recently introduced by the industry—for example,
it can query various local law enforcement agencies, search the internet, read any
relevant article or book, etc.—but, unlike the “agents”, its deductive reasoning is
impeccable, and its design guarantees that human errors and omissions are the only
possible source of error.)

Three remarks about this example:
Fits, any organization—and indeed any person—is faced with many situations

relevantly like this every day, although usually with lower stakes, and only an AI
system based on UP can resolve them in a reliable and transparent way. For example,
the answers to many questions—some of them urgent—about how I should go
about assigning grades in an undergraduate course I am teaching are deductive
consequences of the information contained in the vast number of emails I have
exchanged with my Department Chair together with University policy documents
X, Y, and Z. If I need an answer to one of those questions tonight, before the grades
are due, and the Chair is out of touch, then I’m simply out of luck. This a job for
the UP Reasoner (the special University version). It is not a job for Google Gemini
or any other GenAi gizmo; those are both incapable of finding non-trivial deductive

18

connections and liable to make mistakes of reasoning.
Second, as is well known, the FBI and other organizations do use AI systems

for tasks relevantly similar to the above, and some of the relevant AI systems—
e.g., ones for DNA profiling—cannot in any way be improved upon by UP (except
although their natural language user interfaces can be). What’s missing, and what
is urgently needed, is a single AI system, like the Reasoner, imagined above, that
combines all of the information to which all of the other AI systems have access into
a sparse set of sentences (regarded as having a trusted source) and searches for their
deductive consequences. No other AI system is capable of doing this in a reliable
and transparent way, and, because of the volume of the information, humans are not
capable of doing it at all.

Third, to non-experts in logic, the “review the process” mentioned above may
sound like fantasy, given that the sparse set of sentences from which the Reasoner
reasons is too large for any human to survey, but there are good empirical reasons
to believe that, at least in the vast majority of cases of other than purely academic
interest, there will be a very small, humanly surveyable set of premises that would
need to be checked by the reviewer. (The vast majority of the sentences in the sparse
set will not be used in the deduction at all, and, of the small number that will be
used, an even smaller number will require human attention.)

Second example: Putin’s world view. In the first example, UP was used in the
most obvious way: for discovering facts about (non-psychological aspects of) the
world: We have some sentences, which we presume to be true, and we ask which
further sentences deductively follow from them, and which are also true given our
presumption. Doing this may enable us to rescue a hostage, to discover a life-saving
drug, to submit our undergraduate grades on time, etc. In another important class
of cases, we are interested in the deductive consequences of some sparse set 𝑋 of
sentences not because we presume 𝑋 to be true but because either every member of
𝑋 is accepted by a certain agent 𝑎 or we take 𝑋 to be a good model of 𝑎’s beliefs, and
we are interested in the question “What is the world like from 𝑎’s point of view?”
This is a natural question to ask when we are interested in questions about what 𝑎
would do under various hypothetical circumstances, since—at least in one simple
model that is surprisingly useful when applied to real-world cases—an agent’s
actions are determined by how the agent represents the world as being together
with the way the agent desires the world to be. A less simple and more widely
applicable model (known as decision theory) takes the agent’s rational actions to be
determined by the conditional probabilities the agent assigns to alternative states of
the world (conditional on choices made by the agent) and how valuable or desirable
the agent takes those states of the world to be. But no matter how sophisticated
we get in our modelling, we must be able to probe the deductive consequences
of the sentences that represent the agent’s beliefs (perhaps to a degree) as well as

19

the deductive consequences of the sentences the agent desires-true (perhaps to a
degree) for the modelling to be of any use to us. For example, when constructing
and deploying a model of the mind of Vladimir Putin—particularly to predict how
he would respond to the presence of NATO troops in Crimea—we must be able to
demonstrate that the sentence, “If there are NATO troops in Crimea, then there are
NATO troops on Russian territory”, is a deductive consequence of other statements
that Putin believes or accepts. However, this sentence itself is not explicitly included
in the sparse set of statements used to represent his beliefs (or degrees of belief).
The example may seem trivial, because, if we are reasoning intuitively about Putin’s
beliefs, then of course we will attribute to him the belief: “If there are NATO
troops in Crimea, then there are NATO troops on Russian territory.” But when we
are constructing a formal model (i.e., a computer simulation-cum-model) of Putin’s
beliefs to use for predicting his actions—which we must do, for the same reason
why we have replaced intuitive reasoning about the weather with formal models
for predicting the weather—it is not at all a trivial matter how to represent his
beliefs using sentences that deductively entail “If there are NATO troops in Crimea,
then there are NATO troops on Russian territory.” That requires the automation
of natural language deductive reasoning by GOFAI methods—something that no
known alternative to UP can deliver.

Third example: Simplifying algorithms. Programmers spend a lot of their
time trying to come up with algorithms that are simpler than the simplest currently
known algorithm for computing some given function. The reasoning they engage
in when they do this cannot be profitably automated or even formalized without
the automation of natural language deductive reasoning. At present, the available
options are to either (i) not formalize/automate the reasoning at all or to (ii) actually
define the algorithms at issue by hand in some programming language or other, and
then to do a lot of further very tedious manual work in order to obtain a formal result
about those pieces of code in an ATP/proof assistant such as Isabelle. (i) is too prone
to error; (ii) is too expensive. There is also: (iii) ask the latest model by OpenAI
(or similar) to do the work—but that’s even more error-prone than (i). Here, UP
is potentially a game-changer, because it actually enables programmers to get the
code and the theorems about it they need by doing (i) (but doing it with a little more
care than usual). If you describe an algorithm in natural language, an AI system
based on UP will help you disambiguate your description of it so that it singles out
a unique algorithm about which the system can automatically prove things, as well
as proving things about its encodings in particular programming languages. (E.g.,
“find the shortest Quine in the such-and-such programming language” is already
completely unambiguous EFL. How good a UP-based AI system will be at solving
problems like this depends in the awesomeness of the prover we plug into one of its
gaps.)

20

6 Anticipated further contributions to AI
While breaking new ground in GenAI is not one of our ambitions, we think that
it is likely that work on project will lead to the development of new GenAI meth-
ods for achieving the following important tasks—which have, unfortunately, been
overlooked in current AI work:

6.1 Automating the writing of grammars
We hope to be able to use machine learning to extract a usable explicit grammar
of an arbitrary natural language from a large enough corpus. Writing grammars
that generate all and only the “grammatical” (roughly, acceptable-sounding) sen-
tences of a given natural language is extremely tedious and boring work that can
be automated—although no one so far has figured out how—and its automation
will make possible the rapid expansion of UP to cover all known natural languages.
Note that this problem is not the same as that of training a model to recognize
and to produce grammatical sentences of a natural language—that problem has
already been solved by LLMs. A good LLM, such as the latest ChatGPT, is actu-
ally “better at grammar” than the vast majority of human speakers, in that it will
make grammatical mistakes with a far lower frequency than the vast majority of
human speakers, and will recognize ungrammatical sentences far more reliably as
well. Thus, LLMs have solved the problem of automatically extracting an implicit
representation of a natural language grammar from a corpus. The problem we want
to solve is that of automatically extracting an explicit representation of a grammar
from a natural language corpus, one that associates each word with one or more
grammatical categories (for which we may wish to use labels like “Verb”, “Adjec-
tive”, etc., although the most efficient grammars are unlikely to include categories
that correspond exactly to those of grade school grammar15), and supplies a list of
rules by which each a sentence may be assembled out of its constituent words (e.g.,
“Sentence −→ NounPhrase+VerbPhrase”16). A model with an explicit representa-
tion of a natural language grammar will then be able to “show its work” when asked
how, exactly, it arrived at the conclusion that a given string of words typed by a user

15As we learn from mathematical linguistics (e.g., the work of J. Lambek), and especially that
work in this area that is done with the purpose of facilitating formalization (the work of R. Montague
and various later researchers influenced by that work). Not that we think that mathematical linguists
have discovered the most efficient means of defining natural language grammars, but their methods
are nevertheless better than those of grade school grammar.

16To give an example of a formation rule in the style made famous by N. Chomsky in the 1950s.

21

was a grammatical sentence of English, e.g., by displaying a parse tree like:

S
every bird eats some insect

DP
every bird

Det
every

N
bird

VP
eats some insect

V2

eats
DP

some insect

Det
some

N
insect

(1)

Our problem might well turn out to be easier than the protein folding problem
that was effectively tackled by DeepMind’s AlphaFold.17

6.2 Automating lexicography/morphology
In a sense, the specification of the lexicon (the words and their grammatical cate-
gories), including the various ‘forms’ of various words (e.g., plural vs. singular—
commonly known as morphology) is included in the specification of a grammar, but
it is a subtask that can benefit from its own special methods, which we also have
ideas about. In particular: various lexicons (e.g., dictionaries) are rich sources of
information on lexical items and their ‘forms’, some of which cannot be extracted
from a corpus. The automation of the the extraction of that information from a
lexicon—which we hope to achieve—will both accelerate our own work on UP and
have many other applications.

6.3 Automating disambiguation
Once we have a grammar for a natural language, whether written by hand or produced
by machine learning, the further task of suggesting plausible disambiguations (in our
case, corresponding EFL parse trees) for each sentence generated by the grammar
will have to be automated. This will involve pairing each sentence with a different
sort of parse tree, one that breaks it down into parts that can be used for translating

17Which, we note, was more akin to the problem of extracting an implicit grammar from a corpus
than the problem actually before us.

22

the sentence, as intended, into HOL (that is the purpose of EFL). Note that the
problem is not that of finding every EFL-parse tree for a given sentence (typically
there are too many) nor of finding at least one EFL-parse tree for it (most of them
would yield implausible translations) but of finding the unique EFL-parse tree that
captures the meaning most likely intended by the writer/speaker of the sentence—or,
if there is not a unique one, then a manageably short list of options from which the
user can choose (or from which the system itself can choose at random, for some
uses of UP).

We already know, on the basis of our own small-scale experiments as well as
the experiments reported in the literature,18 that LLMs will be reasonably good at
this task. However, a model trained exclusively for this task might well approach or
exceed human-level performance at natural language writing/speech comprehension.
Generating data for the training of such a model would be a significant challenge,
which we have ideas about how to meet.

6.4 Automating the design of EFL
EFL is a work in progress. We do not expect to have hit upon the optimal grammar
for disambiguated English, and much of the point of the work described above
is to automate significant parts of the further development of EFL. Perhaps most
obviously, because we want EFL’s parse trees to look just like those of the plain
grammar (e.g., (1)), with a few labels—e.g., for types—added, the continuous
revision of the rules of the grammar of EFL will be informed by the insights gained
by applying our methods for extracting grammars from corpora.

6.5 Automating formalization
A natural language deductive reasoning module based on UP already is a device for
automating formalization (of texts, theories, and whole sciences)—which is to say,
it can easily be used for that purpose. However, there is important work to be done
on what kind of further non-GOFAI augmentation of such a system would make it
especially good at autoformalization. For example, if we autoformalize a textbook
in quantum field theory, we want the result to be consistent, but we can expect that
we will only get consistent autoformalizations that exclude some sentences in the
book. A search of all such autoformalizations would be useless even if it could be
carried out (which it cannot be). Luckily, LLMs are very good at making guesses
about which sets of (disambiguated) sentences are likely to have been intended,
and GOFAI methods can be used for eliminating the inconsistent sets among these.

18The research that led to AlphaProof is especially relevant here.

23

There are, then, good reasons to be optimistic that UP can be used as a component
of a specialized autoformalization module that that outperforms the state of the art
in the area.

Autoformalization is another area in which progress can accelerate the progress
we make on the development of UP. Perhaps most obviously, we can generate the
largest library of formalized mathematics in existence by autoformalizing all of
published human mathematics, and then allow UP to use any result it finds in that
library as a lemma in its reasoning.

6.6 Automating non-monotonic forms of reasoning
Non-monotonic19 forms of reasoning (e.g., counterfactual/subjunctive reasoning
and inductive reasoning) have stubbornly resisted formalization since Frege intro-
duced the method of formalization in 1879. We agree with the mainstream view
(among logicians) that the reason for this is that these forms of reasoning cannot be
formalized at all. But that doesn’t mean that they cannot be automated. It seems to
us obvious that they can be automated reasonably well by a combination of GOFAI
and non-GOFAI methods presently available to us. In particular, LLMs, being a
sophisticated form of predictive text, seem better suited than any other AI systems
available at present for this task, which involves both deleting premises (those that
can no longer be assumed given a new premise) and adding premises beyond those
that follow by pure deductive logic from the premises that remain. Here are three
examples:

Counterfactual reasoning: Non-trivial counterfactual (AKA subjunctive) con-
ditionals answer questions about how the world would have been (in certain respects)
it had been different from the way it actually is (in certain other respects). Con-
sider the following contrast between indicative (AKA material) and counterfactual
conditionals:

If Oswald didn’t kill JFK, then someone else did. (Indicative.) (2)
If Oswald hadn’t killed JFK, then someone else would have. (Counterfactual.)

(3)

(3) is false; (2) is true (presumably—unless, e.g., Oswald was part of a conspiracy
that included a back-up assassin who would have killed Kennedy if Oswald failed).
In fact (insofar as we are ruling out a conspiracy), we can confidently assert that, if
Oswald hadn’t killed JFK, then JFK would have continued his re-election campaign

19A consequence relation ⇒ is said to be monotonic when Γ, 𝜑 ⇒ 𝜓 whenever Γ ⇒ 𝜓, i.e., what
⇒-follows from a certain set of premises also ⇒-follows from those same premises together with
any other premises.

24

on November 23, 1963. To arrive at this judgment we do something like this: We
suppose ‘Oswald didn’t kill JFK’, and we also assume many other facts that we
know to hold, but not all—in particular, we do not assume that someone killed JFK,
on November 23, 1963, nor do we assume that JFK died on that date or within a
few days of it—and we then see whether ‘JFK continued his re-election campaign
on November 23, 1963’ follows deductively from what we have supposed. There is
no known way of specifying the rules according to which we decide which known
facts to assume and which ones not to assume when we do this, but we know that
LLMs are already quite good at simulating what we do when we do this.

Decision-theoretic reasoning: In decision-theoretic reasoning, we consider the
consequences (in some non-monotonic sense) of our taking various actions available
to us.

Inductive reasoning: Inductive reasoning proceeds from instances to general-
izations: e.g., an inference of the form

All 𝐹s observed thus far are 𝐺 / All 𝐹s are 𝐺

will be a good inductive inference in some contexts, for some 𝐹s and 𝐺s. Inductive
reasoning is constrained by the rules of probability and logic in various ways (e.g.,
if 𝜑 is logically inconsistent with 𝜓, then 𝜑/𝜓 is not good a inductive inference),
but so far attempts to spell out the rules of inductive reasoning, insofar as they go
beyond those minimal constraints, have yielded no agreement on the rules. And yet,
at least for a variety of special domains, there is a definite sense in which we know
how to automate inductive reasoning, since that is exactly what machine learning
does: it extracts patterns (generalizations) from their instances. LLMs, for example,
are so good at predicting the next token in a string of characters that LLM-based
chatbots can leverage this ability for fooling human interlocutors into thinking that
they understand English. LLMs and other GenAI gizmos, however, do not express
their inductive reasoning (from their training data to their implicit generalizations)
in any language, whereas inductive reasoning, in the sense in which we can hope to
automate it, is reasoning with sentences. There are many ways we can think of to
use the resources of GenAI for automating deductive reasoning, and we expect to
make some progress in this area.

Two further points:
First, every one of the six tasks listed here ((6.1)-(6.6)) (including the first two

subtasks of the (6.6), as well as, obviously, its third subtask) is a matter of automating
inductive reasoning in some sense.

Second, there is no way to automate inductive reasoning in any of these senses (or
in any others) in a provably correct or transparent way: because there are no formal
rules of inductive reasoning, we cannot prove that our automated inductive reasoner

25

will always perform its inductive reasoning in accordance with the rules. The
closest thing to a rule of inference of inductive reasoning is the learning algorithm
of a model that performs inductive reasoning as it ought to, but such an algorithm,
since it has no premises and no conclusion, is not a rule of inference. The direction
of evaluation here, as we see it, is the opposite of what we have in the automation
of deductive reasoning: first we automate some species of inductive reasoning in
a passable way in some model, and then we use that model for evaluating various
proposed rules of that species of reasoning.

All of the examples cited above of areas in which advances in non-GOFAI
automation are likely to be achieved are examples of possible future work that is
“empirical” in the sense that we cannot hope to prove, in advance of adopting a
particular method, that it will deliver the results that we want. Experimentation will
be required, but that is the norm in AI nowadays, and we are by no means averse to
experimentation.

26

	The problem
	An analysis of the problem
	The solution: UP
	Motivation and overview
	The task and its subtasks
	The rationale for UP's design
	The nature of UP's guarantee of correctness
	A division of labor, enabling a new paradigm for AI
	Ease of assembly

	A comparison with Lean
	A quick comparison
	A more detailed comparison
	Disambiguated natural language
	The language HOL
	Translations between EFL and HOL
	The formal system

	The uses of UP
	A new paradigm for AI
	Examples of uses of UP

	Anticipated further contributions to AI
	Automating the writing of grammars
	Automating lexicography/morphology
	Automating disambiguation
	Automating the design of EFL
	Automating formalization
	Automating non-monotonic forms of reasoning

